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ABSTRACT

A method to find approximate solution of an idealized model of the blast
wave problem is developed, the gasdynamic motion is initiated by an instan-
taneous energy release from a point source (or line, or plane source).
Transformation of variables is introduced with a similarity parameter x as an
independent variable along with a quantity less sensitive to the phenomenon.
This reduces ‘the fundamerital system of equations of the problem to a manage-
able form for the approximation, which is conveniently performed in a power
series expansion in the variable y and the coefficients ofthe expansion canbe
determined successfully from the systems of ordinary differential equations.
The method has been applied to many problems of the similar type, with
some modifications necessary for each case, to blast wave, the propagation
of the blast wave in the non-uniform medium, exploding wire phenomenon,

magnetohydrodynamics cavitation and thunder.



BLAST WAVE THEORY

Akira Sakurai

1. Introduction

A blast wave is a rather common phenomenon usually experienced as a
"'shock' when some ex~'osion occurs, and the phenomenon itself is simply a
kind of disturbance in the atmosphere like a sound wave., The characteristics
of a blast wave are, however, quite different in many ways from those of
ordinary sound waves. Unlike the velocity of sound ¢, the velocity of blast
wave U 1is not constant and is always bigger than ¢; usually U is very
large near the source of the explosion and decreases very quickly, approaching
the sound velocity ¢ as showrn in Figure 1. The fact implies also the energy
dissipation is more significant in a blast wave than in a sound wave. Secondly,
a blast wave is not really a wave of periodic type like ordinary sourid, but con=-

sists of a single pulse distinguished by the presence of the shock wave (The

terminology ''shock wave' is used here to indicate the front surface, not the
whole pulse region which we refer to as a ''blast wave''), At the front, the
pressure p, the density p, and so forth, jump abruptly from their values at
the undisturbed atmosphere Pgr Pgreee {Figure 2). Moreover, its wave form
changes shape in the course of propagation in quite a different way from that in

the sound wave case.
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Figure 1

Decay of Blast Wave



Shock front

Figure 2

Pressure distribution in blast wave
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These features result from the non-linearity of the phenomenon, causing

the atmosphere to be so riisturbed that the pressure, the density, and so forth,
are considerably different from their undisturbed values Pgs Pgs soe o In the
sound wave case, on the other hand, these differences are small and the
phenomenon can be treated much more simply on a linearized basis.

Although there has been a need to clarify the details of thase features for
many years, chiefly with the obvious aim of estimating the effects of explosives,
the attempts at theoretical study of the phenomenon had to face the very dif-
ficult problem of finding the solution to the non-steady flow of the full non-
linear hydrodynamic equations, satisfying a moving boundary condition at the
shock front.

This situation, however, has been eased to some extent since the Second
World War, the demands of which obviously stimulated renewed interest in the
phenomenon. As a consequence a large amount of experimental as well as
theoretical work was performed. Considerable progress has been made not only
in this particular area, but also in related fields. The investigation has since
been extended to quite different fields by applying the techniques and the re-
sults proved useful in the original problem.

The greatest progress was made probably when the concept of similarity
was introduced, which simplified the problem while retaining the essential
nature of non-linearity. The concept itself is not new, but has been familiar
also in some other fields of fluid dynamics, such as boundary layer theory,
conical flow theory and so forth. The assumption of similarity causes the number

of independent variables to be decreased and thus frequently reduces the
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fundamental partial diffcrential equations to the more manageable ordinary dif-
ferential equations.
The blast wave solution of the equations of gas dynamics was found

(Sedov, 1946, Taylor, 1950) in the form of similarity solution. However the
existence of a group of similarity solutions of progressive wave type had been
known before in connection with the contracting spherical wave problem.

( Guderley, 1942). It should be noted that the similarity in the blast wave
phenomena does not hold exactly, but is valid only while the wave is strong
enough to neglect the effect of the ambient atmospheric pressure. Since it is
obvious that the hydrodynamical representation of the phenomenon does not
hold very near the explosion source, the range where the similarity solution is
valid, is accordingly limited in a very small region ( even in the strong blast
wave from an atomic explosion, it is reported tc extend between 20 and 180m

( Taylor, 1950)). Sometimes in the case of ordinary explosions there is no such
region. Nevertheless, the concept of the similarity seems to be very useful
since the phenomenon preserves the similarity in some extent ( Sakurai, 1953,
1954) even at the stage where the front shock becomes weaker.

It has been found that the same kind of similarity sclutions could be obtained for

otherkinds of explosions (Sedov, 1946, Sakurai, 1953,1954, Lin, 1954) such as from a line
source and a plane source, while the ordinary explosion is considered as that
due to a point source. Although the blast wave from the line or plane source
seems to be rather artificial in actual explosions, these solutions themselves
proved to be very useful in many other different fields, especially the applica-

tion of the theory to the hypersonic flow problem ( Lin, 1954, Lees and Kubota,
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1957) where the general principle of similitude ( Hayes, 1947) between hyper-
sonic flow and blast wave behavior had been known to hold. Most of the de-
tails on these earlier developments are seen in such books as Sedov (1957),
Hayes and Probstein (1959), and the more extensive treatment on the subject
given in the recent book by Korobeinikov et al. (196l).

While blast wave theory itself has been continually improved, many im-
portant applications of the theory to the various fields of research have also
been taking place. It is the purpose of the present article to descirbe some of
these recent developments. The fundamental idea of blast wave theory itself
will be described in Chapter 2, which is essentially concerned with the trans-
formation of the variables - both dependent and independent - based on the
concept of similarity, and reduces the fundamental system of hydrodynamic
equations to a more manageable form, although they are still non-linear partial
differential equations.

Different methods of finding approximate solutions to the system of equa-
tions will be discussed in some detail. Various applications of the solutions
thus obtained are given in the next Chapter 3. Firstly, they will be applied to
the blast vsave problem itself ( Section 3.1); this proved to be quite successful,
especially in describing the strong blast phenomenon resulting from the atomic
explosion.

Suppose that we have an explosion of very large scale, as in astrophysical
phenomena. It would then be necessary to modify the theory so as to include
the effects of non-uniformity in initial fields caused, for example, by gravity,

( Section 3. 2). [Applications to the hypersonic flow problems mentioned
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previously are of course indispensable, but the subject may be omitted here

since this should be treated more extensively in an independent article.]

The electrical disintegration of fine wire known as EWP ( Exploding Wire
Phenomenon) has been attracting considerable attention in connection with
various fields (see,Chace and Moore, 1959, 1962, 1964). The exploding fine
wire may be regarded as an example of the line source and may produce a sim=-
ilar situation to that expected from the blast wave solution above ( Section
3.3).

In the vast field of magnetohydrodynamics ( Section 3. 4), there are many
problems on magnetohydrodynamic shock waves which show blast wave-like
characteristics. Since extra terms are needed to describe the effects of the
magnetic field, the genuine blast wave theory above is usually not applied
directly to these phenomena, but needs to be modified. Some of the problems
are, however, very similar to those of ordinary blast wave type and need only
a slight modification, introducing the magnetic pressure. There is an interest~-
ing application of the theory to the problem involving singularity. This is
given in Section 3.5 in connection with the problem of the collapse of an
empty cavity in water. The procedure to this case is not straightforward be-
cause of the singularity but can be modified by introducing Lighthill' s tech-
nique (1949). Quite recently application of the blast wave theory from the line
source has apreared in the problem of thunder. Observations of this have
revealed that the duration between the lightning and the succeeding thunder, its

wave form, and so forth, are very different from the results expected from the
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theory of sound. A more sophisticated way of treating the phenomenon is re-
quired to take into account its non-linearity, and to regard it as a blast wave
from the lightning as a line source ( Section 3. 6) .

Apart from the applications mentioned, blast wave theory is mathematically
a kind of transformation of variables to another set where some of the inde-
pendent variables are not sensitive. The extension of the theory along the
line as a technique to handle the complicated problems especially of non-linear
nature, could be very useful and the development of the technique itself may be

an interesting problem for the future.

§2. Blast Wave Theory
2.1 Fundamental Equations

Suppose that we have an explosion, following which there may exist for a
while a very small region filled with hot matter at high pres sure, which starts
to expand outwards with its front headed by shock wave. The process usually
takes place in a very short time after which an advancing shock wave develops,
which is continuously absorbing the ambient air into the blast wave. Although
some of the explosive products may still remain rear the center, the amount ofthe air
absorbed increases with time, and the later behavior ofthe blast wave may well be
represented by the following model of the shock wave at the front and the purely gas-
dynamic treatment of the motion of the air inside, whichis assumed to bearideal and
non -viscous adiabaticexponent y .

The three types of blast wave ( spherical, cylindrical and plane) all have

features in common and may be conveniently treated in the following

unified manner. The equations of motion, continuity and energy
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of the gas behind a blast wave of one of these types may be written

1

%:-;%, (2.1)
3u

28 ey (2.2)

iDDt—pp-Yzo ’ ( 2. 3)

where u is the particle velocity, p is the pressure, p is the density and
u, p, p are functions of the Eulerian coordinate r ( measured from the center)
and the time t (measured from the iistant of explosion). The coefficient
a has the values:

@ = 0 for a plane wave,

a =1 for a cylindrical wave,

a = 2 for a spherical wave,

and the expression D/Dt denotes

Equation ( 2. 3) is conveniei. ly transformed into

%tp=_w(%+%) , (2.4)

where we have used the equation ( 2.2).

The position of the shock front is represented by R (measured also from
the center), which is supposed to be a monotonically increasing function of t

and is related with the shock velocity U by

dR _
3 = U - (2.5)




2t the shock front where r = R, the quantities such as u, p, p measure
suddenly from their corresponding values in the atmosphere { presumed at rest)
with pressure and density Py» Pg - The discontinuity conditions is given by
the Rankine-Hugoniot relations ( see for example, Courant and Friedricks, 1948)

which for the present purposes, are most conventiently written

(u) o2 Uz--Cz
r=R  ytl U
- 2y U, 2 _ y=l
I 2 2_,C, 2yl
! Py
where C is the sound velocity given by C=Ny— . t2.7)

Po

Now we have three equations (2.1), (2.2), (2.3) and the boundary conditions
(2.6) at r =R . We need another condition to determine U (or R) as a
function of t . The condition may be postulated in various ways depending on
the feature of the explosion. We may assume, for example, a small region of
high temperature and pressure at t = 0, from which blast wave is started. Some
conditions of this type are useful especially, for the purpose of finding the
sclution by numerical procedure, where all the compiications can be taken into
account under the specified circumstances.

To describe the general features of the phenomenon, the point source model
( line or plane source for @ = 0,1) has been considered simple and appropriate
for the purpose. It is assumed that a certain amount of energy is released
instantaneously from a point (or line, or plane). Since the total amount of

energy ( kinetic and thermal) carried by the blast wave is constant and must
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always be equal to the energy released, the assumption of the instantanesous

release of the energy is conveniently represented in the following way ( Taylor,

1950) .
R p-p
-1 2 0, &
Ec-_{)(zpu t—p)rdr, (2.8)
or
P o+l
(L2, 2,0, __OR
Ea—jo(zpu+y-l) ar = -1 a4l ?

where Ee is related to the released energy as

6 Explosion energy per unit area for ¢ =0 ,

Ea = { { Explosion energy per unit line) ( 27) -1 for a=1 . (2.9)

L(Explosion energy) (4mw) -1 for e =2 .

Although the model is apparently inadequate to represent the aqtual situation in
the very early stages, where all kinds of complicaticns are involved, it should
be recalled that in this pericd, the gasdynamical representation of the phenom-
enon is not adequate in any case. The advantage of using the model is two-
fold. Firstly, the model, although it is not adequate in the earlier stage,

becomes more and more accurate at the later stages regardless of the kind of

the explosive or the feature of the explosion. Secondly, the shock front ap-

pears from the beginning in this model, since the explosion is assumed to take
place instantaneously at a point (or line or plane). Thus we may avoid the
nuisance of the shock formation and at the same time we may expect a kind of
similarity in the flow field. Because of this similarity, the whole system of

equations can be transformed to a mathematically feasible system and thus can

be solved approximately, which willbe seenin the following Section 2. 2.
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It should be noticed that since an instantaneous source is assumed, the
second shock may not be developed in this model. While the secend shock or
more shiocks appear in actual explosions and they themselves provide interest-
ing effects, their features depend considerably on the sequence of the explosion
and are well understood in connection with specified initial conditions. It
seems more appropriate to use direct method (for example, Holt, 1956) or
numerical method ( for example, Goldstein and v. Neumann, 1955, Brode, 1959)

for studying their features in individual cases.

2. 2. Blast Wave Transformation

Let us introduce new independent variables (x,y) defined by

2
r C
R UZ

and transform the dependent variables as

u=Uf(x,y), p =po'y'l a(x,y), p = pyh(x,y), (2.11)

where f, g, h are new dependent variables to bé found ( Sakurai, 1953).

The introduction of x is most important and is based on the similarity
nature of the one~dimensional flow given by Eqs. (2.1), (2.2), and (2. 3),
for which a group of similarity solutions depending only on x exists ( See for
example, Sedov, 1957). Although none of these solutions satisfies the condi-
tions(2. 6) and ( 2.8) exactly, there is a ..0n satisfying them approximately
when the front shock is strong and (p,/p) =g 18 negligible. Since the front
shock decays very quickly even in the stronger explosions, i* is necessary to
take into account the effect of the pressure neglected above, for which we need

to retain independent variable other than x . The variable y in (2.10) is

=}2~-
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chosen so as to fit the conditions ( 2. 6) and (2. 8), which are now written as:
f

f(l,y) = ;f;u-y) )

o it i bl S

=2y _Xx1
_ytl o2 -l
h(IQY) - Y.l(l+Y'l Y) 9
"
and ',.
(fg)m = 'l(-thz + Ly xdx - —X (2.13)
YR AT (atl) (y-1) °* .
where we have put ﬁ
R, = (F!)l/‘ atl) (2.14)

The transformations ( 2. 11) are thus partly chosen to fit the conditions { 2. 6)
and (2.8), and at the same time, to match the requirements of the similar-
ity solution.

since yeC(py/p) _o for a stroug shock (See Eq. (2.6)), the solution
tends to the similarity solution as y—0 (R—0) . Alsoas R tendsto , y
tends to l{ U—C) . The condition ( 2.12) is not much affected by the value
of y , which varies only between 0 and 1 and we may expect a similar in-
sensitivity to y in condition (2.13) also. Thus the variable y is expected
to have little effect in the solution. As a matter of fact, we can make other
choices of the variable such as R ( See Section 3. 2 below), which are expected
to be insensitive to the solution.

By introducing ( 2.10) and ( 2.11), the fundamental equations (2.1), (2.2),

(2. 3) are now transformed into




G e B P PN Py LT RIS T v

“inar-nZyR.2E

2 9y vh ’
< (f-x)%+xy%=-h(%+%) . (2.15)
-kg-l-(f—x)%‘!'ky%s-yg(%-ﬁ-f’) ’
where
-R dv
)L-y dR ° ( 2.16)

and M\ is considered as a function of y only, in fact R is represented by
" Eq. (2.13) as a function of y and we find, by differentiation of Eq. ( 2.13)
with respect to y ,
1 dal -1
Me[etl] -Vl U-vg0) (2.17)

where we have put

1
Xpg 4 -9 ) o® ax =
](;(2hf 1 )x dx=7J . (2.18)

Although the system ( 2.15) includes the integral J in (2.18) through A

in (2.17) and still looks formidable, it will be seen in the next section that the

4

system is much more easier to treat than the original one because of its insensi- E
tiveness to y .

It is also worthwhile to note that the system is represented by three non-
dimensional numerical constants a, y and RO’ in which R0 is most important

and is related to the scale of the explosion.

2.3. Solution in a Series Expansion in y
2.3.1 General procedure
It is readily seen that if we put y =0 in Eq. (2.15) ic is reduced to a

system of ordinary differential equations where A is constant and equal to a+1,

-14-
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while the condition ( 2. 12) for this case provices the boundary values at x =1
and Eq. ( 2.13) gives the relation between y and R (or U and R) as
yGCR‘H'l . These are all the immediate results of the similarity solution of the
intense explosion. Now it will be shown for general y that if we express

f, g, h, in power series of y as,

Ce=f0 4y 242 4,

?

g=g +Yg ty

{ (0) 248, , (2.19)

hl® 4 yntV 4202 ..

’

f(n’ g1 )

where (i=0,1, 2, ...) are all assumed as functions of

x only, then these f( i), g( )

’ h( i) (i=1, 2, ...) can be determined suc-
cessively starting from the similarity solution given by f( 0) ’ g( 0) ’ h( 0)
( Sakurai, 1953, 1954). It should bes noticed that this is not always possible in
a non-linear system, but often quantities for i = 1 or more appear in the first
approximation, which makes the successive approximation procedure impossible.
Using the expression (2.19), the integral ] defined in Eq. ( 2.18) becomes
formally,

I=Io(1+crly+czy?‘+...) ’ (2. 20)

where we have put

1 2 (0)
yozf(-’z‘h(o) £9 +d—)x%ax ,
0 y-1

1 2 i)
oo = J (! VAN X A0, + L yxax (2. 21)
0

1 (2)
- [yl (2 +_xf(0) SN SR

0
2
+3 j:(h(o) fD° 4 2pM D) (0)) @y,

-15-
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With use of expression ( 2. 20), Eq. (2.13) becomes

R, @+l \ 2
y(g) =10[1+{cl-;o(;ﬁ)(y_l)}y+wzy + el (2.22)

which shows the y-R relation more clearly. A\ in Eq. ( 2.17) is also expanded

as

k=(¢+l)(1+hly+kzyz+...) , (2. 23)

where we have put
. 1
M7 T Tl (v

Ay=20,, (2. 24)

k... [

Putting Eqs. (2.19) and ( 2. 23) into Eq. ( 2.15) and equating the coefficients of
the terms in corresponding powers of y, we get the following systems of dif-
ferential equations.

From the coefficients of the y* terms,

f
(£9- 5 n(® dO' L0 el (0 (0
(0)*

+(0)

0!
(0)

(0 a0, _ . (0
vl f +xf ) ~a-1l=(x~f§ )g(o) ’

-

From the coefficients of the y terms,

4 g 4 240 A0y e (2.25) -

m“@m&wmm B
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§
|
4
i

(0),(0)

1 (0 0 0) ', (1
{ p{ 0 (D! —(x- (0))h(1)' (h(O)' +_ (0))f(1) (f(O)' _f(0)+ﬂl)h(l)
g(0) D! -(x-f‘o))g(l) ' _(g(O) ' +_9§x 9(0))f(1) "Y(f(o) ' +%f(0))

+(a + 1)x1g(°) ’

L

Similarly Eq. ( 2.12) yield the following conditions:

(" [(0) 2 0y (0) ytl
(D, ___2  (D,__yl (), _2(y]) |
£ =-—fr, o0 D=0y, B = L ( 2. 28)
< ( y=1)
£2) =0, ¢'?(n =0, nlPy x| (2.29)
(y-1)
L eoe -

The first system of non-linear differential equations ( 2. 25) with the con~
ditions ( 2. 27) gives the similarity solution ( given by Taylor (1950) and Sedov

(1946) ), and the value of the integral Io in Eq. (2. 2l) is determined from

these f(o) ’ g( 0) ’ h( 0) . The second system of Equations ( 2. 26), after in-

(00 (0) ,(0)

obtained above, becomes a system of
(0 (0 ()

serting the values of f
linear inhomogeneous differential equations for £ . The system
also includes the unknown parameter xl , which is related to o 12 by the re-

lation ( 2. 24) . The solutions f( l) (l ), h( D of Eq. (2. 26) subject to the
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boundary condition ( 2. 28) thus include xl (or o'l) . Inserting these solu~-

tions in the right side of the second equation of Eqs. (2.21), we have an equa-

T

tion to determine A, . With this value of \,, f( 1), g( l), h( 1 are de‘ermined
finally, and we have the second approximation to the prob lem to the order of
Y, in the following form,

r

P TR Sy

u=U{? 4y roy?y,
P = (py/y) ? +y oM roryhy, ( 2. 30)

p=py ¥ +ynt? royhy

R
(£ 2 (2™ =g e n v+ 0ty

.
The proced 're in the third and further approximations is the same in

principle as in the second approximation above, and f( i) ’ g( i ’ h( i) ’ )‘i for

all i are to be found successively. o L

While it is naturally not easy to see the validity of the solution in ex-
panded form, some verifications will be obtained simply by comparison with
corresponding experimental data as well as with some purely numerical solu-

tions. It is noted that singularities of the form y-l in p or Y)\(¢+1) in R

( see Eq. (2.30)) are removed before the expansion, where only the parts pre-
sumably insensitive to y are concerned. It is not likely, however, that the
expansion is gocd as well up to y =1, where all quantities are subject to
another kind of singularity ( see Section 2. 4 below). g
In fact it is expected that R—® as y—1 and accordingly from Eqs. (2.13)
and (2.18), J must approach the value (a+1l) -1 (y-1) -1 as y—l, and itis

hardly to be expected that the expansions of J in Y behaves in chis way. The




difficulty will be overcome to some extent in the following Sectiop 2.4. Another
technical way of improving the expansion procedure is to expand po,/ p instead
of p/ Po 3S in Eq. (2.19), which led to the expansion of [1+2y/(y-1)] -1 in
2y/(y-1) (see Eq. (2.12)). Since 2/(y-1) isusuallyratheralarge number for
ordinary values of y nearfor y=1.4, theexpansionin 2y/(y-1) isexpected to

be poor and the alternative way of expanding p 0/ p is supposedto give betterresults.

2.3.2 First approximation
Equations ( 2. 25) are known to have two intermediate integrals and the
resulting first order differential equation is integrated exactly. Multiplying

the second equation of Eqs. (2.25) by (y-1) and subtracting the third one

yields,
RO GO
RO T (0

}_l_f(o)' o -f(o))

(x = £ M) {(y=) - +2(x

3

which is readily integrated to give

-\ y=1) -
gt £ Ok (0 x¥ = 2% (=LY

(x -~ = F1 Al

, ( 2.31)

where we have used the condition ( 2. 27) to dotermine the integration constant.

The second integral is, from the energy relation,

’

2 2
Q@ p | pu Y@ YO . pu .y _
g lr (Ot Nglru T+ 50 =0

which, in the present case, is reduced to

(0)
d [ _et g

dx v( y=1)

2 (0)
1 (0). (0) e (0) g 1 (0)
+SE R e xf (V1 2t

2p()7 -
dx

and integrated to give

(0)
{0 f

= x( , (2.32)



0
where we have again used the condition ( 2. 27). Eliminating g( ) and h( 0)

from Eqs. (2.31), (2.32) and the third equation of Eq. ( 2. 25), we get

(0) (0)' (o) _(0)’ '
xet oo 26 0 dof o oy (0)' e (0)
2=y % L0 T TH0 T G0 x

which is evidently integrated by putting f( 0 /x = F(say) with the result

(0) _ _eafat3)(y-l) {at]) (y=1) (0) _
2logf == (atl) y-( a-1) log x 4 2via-1 log { yf X)

_telezars) y®s (-30%s 2asye e’ (e vo(acl)y
( 2y+a=1) {{a+]) y=(a=1)} 9 a+3

e s A AR TR e 9 4 m pare s el

+logc , (2.33)

where c¢ is the integration constant determined byEq. (2.27), given as

2 2 2 2
log ¢ = 2log —2--4et3(zl) ) ool (@ +2e+5) v +(-3a +2atl) v+ (e 1

ytl Zyta-l v+l (2yta-1){( at+l) y=(a-1)}
. log |3a+l-§ a-1) Y| |

(@+3) (y-1)

It is also known that this kind of exact solution exists for more a general type %;

of similarity solutions such as the initial distribution obeying a power law in

distancé, time: dependent energy supply, and so on { for more details for ex-
ample, see Korobeinikov et al., 196l1). It is noticed that the solution (2.33)
is not always valid but needs to be modified for some values of yand ¢ .

For example y = 2 is singular and the solution ( 2.33) is modified by applying

a limiting process as y— 2 namely,

2
(0) _ 2(1-F)" 4 _-a-3
f - XP’ F Zl:, -1 - 27 X ] ( 2. 34)

a =2, y=7 is also singular and the solution is simply given by




A0 _x (0 2.3 (0

1
)g =4x9

w» %

4 ]
-3x . ( 2. 35)

The case y = 2 is interesting because plasma under uniform magnetic field is
expected to behave somewhat like a gas with y = 2 (Spitzer, 1956), while

0 0
Yy = 7 is an appropriate value for water. Graphs of f( 0) (x), g( )(x) ’ h( )(x)

in the typical case of y =1.4 (air) are shown in Figure 3. Little divergence

y

Figure 3

Solution curves of f( 0)(x), g( 0)(x) s h( O)(x)
for a=0,1, 2 taking y=1.4
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A0

is found for various values of vy . at x =0 is always zero, showing

u(0,t) =0 ( 2.36)
as required, a condition somctimes used to determine the flow field for
further approximations ( see below in Section 2. 3. 4).

After obtaining the f( 0)’ g( 0) ’ h( 0) values above, the y-R relation

(or U=-R relation) given in B.q. ( 2. 22) is obtained in the first approximation by
evaluating the integral ]0 in Eq. (2.2l). Unfortunately, IO cannot be inte-
grated analytically, but is only found numerically. Since the exact expression
for f‘o) ’ g( 0) ,’h( 0) given by Egs. (2. 31), (2.32), (2.33) are rather in-
convenient to compute it is sometimes more efficient to get their values by
direct numerical integration of the original system ( 2. 25) starting from the
values given in Eq. (2.27) at x =1 . The most recent numerical data on
f( 0), g( 0), h( 0) are given by Jones (1962) for some values of y . ]0 values
computed from these data are exact to three digits when compared with the
values obtained by various methods. Some of the values are reproduced in
Table I. The divergence between these values indicates the difficulty in find-
g0 plo

ing the numerical values of f( 0) ’ partly because of their rapid

change near x=1 .

2.3. 3 Further approximations

(1) (1) x( 1)

It is convenient to introduce new variables ¢ ", ¢ 7, (i=12,...)

by the relations,

A0 a0 0 (D (0 (1) ) (o) ()

, . (2.37)

Equations ( 2. 26) to the second approximation are thus reduced to
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(0) ' '
“(x - f(l)) (n*, - q;“) =269 4

a=1. (1)
el (2.38)
* 00 e O, 2
R CILEP B R Sy, et £ N
2 x_f(O) xf(O) l
(x=- M-V e x') s (aen (P + X)) ( 2. 39)

(=8 =y P+ 10"y 2 (@t {(y-1 P &P N ( 2. 40)

where we have used Eq. (2.25).

The condition (2.28) at x =1 becomes
A =B Wy =y, Dy - F (2.4

Another condition ( 2. 21) , eliminating oy by Eq. (2.24), is transformed into

1 (0
SOt O =t Myl D ot L (1 2 £(0) WO (2
0

1
=Nt lar)(y-0 °

It is readily seen that the combination of Eqs. (2.39), (2.40) written symboli-

cally as (2y-1)x Eq. (2.39) - 2x Eq. (2. 40) gives
(x-£9) 'dg;[q)(l)-qu(l) + 2y-DxP] = (@l (o' V-2 4 (24-1) x“’+zx1] ,

which is integrated to give

1
. exp( J T
1 x-£9 ’

where the integration constant is determinec by Eq. { 2. 4l).



1
{(olv‘” +Q,y

1

(1) —
(y-1)(e+l) , ( 2. 45)

«
)x d:(+101+xllozshllo+
where Ql’ Qz, 101’ 10z are given by
6 .(0 1 1 (0
Q= v WY (x-JhLAM

2
==X_g0 ", (0) _1 (0)
Qz'ZV—If h -l-Y_lg ’

1 2
) 0) “, (0) 3yl yl .o .
I * Toz M =5 7o {)f‘ n% gaa - 2L X R - 26 hax
Although Eq. ( 2. 44) are linear in (o( 1) , q,.( 1 ,and )'l’ it is apparently not possible

to find the solution analytically, except for the very special cases as e=2 ,

y = 7, to which the first approximation becomes very simple ( see Eq. (2.35)),

and Pl’ Pz’ P5 are reduced to simple forms proportional only to x-l; thus
¢( b ’ 4:( 1 are found in the form of a certain power of x . (Morawetz, 1954,

see also Korobeinikov et. al., 196l) . Generally, Eq. ( 2. 44) may be integrated
numerically. The equations, however contain an undetermined parameter \, ,
and are not suitable for numerical integration in their original form in Eq. (2. 44),
but may be integrated in the following way. First we split ¢( h ¢( 1 into two

’

parts as

1 1
S =¢(11)+x1¢(21) e ="‘§1)*"1"’(zl) , (2. 46)

where ¢i 1), ¢(21) ’ q;i b ’ \I.o(zl) are independent of xl .

Substituting Eq. ( 2. 46) from Eqs. (2.44) and (2.45), we get the following

systems of equations,
(n!

LU Sl
s '
9{“ =%¢in + P, {(Y'l)'in-i- .pin} ’ (2.47)
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(n' _ (1) (0,

¢2 =P ¢, +P ¢ 4 ’ ( 2. 48)
n' 1 (1 1 1
vp) =ruy) e pliyney) ¢ b -1y,
1
xl{_{)(olqof,_nafo ¢(z”)x" dx+102-10} ( 2. 49)

b1
Yoy (y-1)(a+)) °

~-f(ol“’+o B 0) 2 a -

Eqs. (2.47), (2.48) may be integrated numerically from the initial values at

x =1, which are obtained from Eqs. (2.4l) and ( 2. 46) as,

AV =l =5 S = =0

(1) (1) () (1)

Using the values of ¢ s Py \pl ’ 4’2

thus obtained, )\1 may be de-

termined, from Eq. (2.49). Once xl is determined, «p( b ’ '-P( b can be eval-

uated from Eq. (2.46) and x') is given by Eq. (2.43). The numerical pro-

cedure has been performed for y = 1.4 in each case of a =0, 1, 2, and the

[ values of )\1 obtained are -2,138, -1.989, -1.918, respectively, showing these
Table II, =\, Values

)|
from Korobeinikov & Chushkin

a/y 1.1 1.2 1.3 1.4 5/3 2 3
0 2.3257 2.2437 2.1862 2.1433 2.0683 2,0143 1.9407
1 2.0866 2.0424 2.0092 1.9836 1.9374 1.9043 1.8632
2 2,0010 1.9666 1.9396 1.9182 1.8785 1.8496 1.8141

values are almost 2. Recently the fact has been verified also for different
values of y by extensive numerical works by Korobeinikov & Chushkin (1963).

These values obtained by them are listed in Table II.
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Functions ,( l)’ \P( l)’x(l)

for y=l.4 are shown graphically in Figure 4.

X 5
a=2 a=]1 a=0
—_—

a=2 a=la= | ¢
¢(l’
0.6 0.8 1.0

Figure 4
Solution curves of 9‘ 1) , ¢( 1).’ x( h for
e=0,1 2 taking y=1.4
Exactly the same procedure as above is applicable to the further stages of ap-
proximations. Swigart (1960) carried out the third approximation in the case

y=l4, =1 . The value of hz obtained is




xz=z.7373 (for y=1l4, a=1) ,

while the functions «p( 2) ’ up( 2) ’ x( 2) are shown in Figure 5.

.0

0.6 0.8 1.0
i x
f Figure 5

Solution curves of ¢( 2), q,( 2)’ X( 2)

2.3.4 Other Methods
(2

It is seen in Figure 5 that ) varies considerably and its value is rather

large compared with cp( 2) ’ ¢( 2) . This indicates, as suggested in the pro-

ceeding section 2. 3.1., that better results will be obtained by expanding in

pO/p instead of p/p0 . In the expansion of po/p, the quantity corresponding
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to x( 2) is zero at x =1 and may behave better in the whole range.

The quantities p( b R \P‘ D as well as ¢( 2) ¢( 2) , themselves vary slowly,

but pi 1 ’ ¢;” s oo are not slowly varying. In fact ¢: b ’ ¢(21) become

infinite as O xteth)

), while proper choice of )‘l satisfying Eq. (2. 49)
cancels the singularity in qa( h . Thus ¢( b remains finite at x=0 , It
should be true to ¢'') for all i since u(0,f) =0 (Eq. (2.36)). The fact may

be used to determine xl, as follows

lim(fin+h1f‘z”) =0 , ( 2. 50)
x—0

or

lim (¢ii) + 7\1 ¢(zj'-)) = finite .
x—0

In fact the value of )Ll determined in this way coincides with the value above
in Table II. In actual procedure, 4{ ) , ¢(21) ’ q{ 1 ’ q;(zl) are expanded in series
of X near x = 0 and their coefficients are evaluated by fitting these expansion
solutions to the numerical one from x =1 . After these coefficients are de~-
termined, xl is determined to cancel the singularity. In any case, it is not

convenient to find ¢i 1 ’ 4{ 2) which become bigger as x—0 because of the

singularity.
An alternative procedure of integration, by means of which the difficulty

may be avoided is as follows; Introduce the notation,

1 1 1

- "(l) A YP1+(y-1)P5 YP2+P5 i YP3
(1 4 P1 P ’ a P

" ) 2 3

1
=P, ,-P Q
Ph= (v4p 5) , m:(l) .
4 QZ

=30~




Equations ( 2.44) and ( 2. 45) are then conveniently written in the following

vector form,

X'=AX + a2+ b, (2.51)
! * o 1
_jom X x dx-'m -IOI+XI(IO-IOZ) . ( 2.52)

Now we introduce new functions Y as,
1-(2) . PR, Tein

and multiply Eq. (2.51) by Y * from the left and integrate it from zero to one

to oltain
1 1 1
J Y¥Xrax = Y*AX dx+ j Y¥(a+nbrax,
0 0 0
which yields after an integration by parts,

1 1

JUYH 4 Y* AKX ax=[Y*X] - [ Y*(a+\b)dax . (2.53)
0 0

Suppose that we chose Y, so far undetermined, to satisfy the equation,

Y 4 y¥a=n*x*, (2.54)

Eq. (2.53), by use of Eq. (2.52), becomes

1
.____1_..____ - _ % 1_ Ty %
(D) (v~ lo1 * Mo =Top) =Y X ]OY (a+nb)ax .

( 2.55)

Now we choose the valueof ¥ at x =0 as

%
[y X ]x=0 =0
which is in detail

- (1) , = (1) _
(e 7 + Wy )x=0-0.
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. )]
Since 9( 1) ’ ¢( “) are supposed to be finite at x = 0, we may simply put

?(0) =4(0) =0 ., (2.56)
to satisfy the condition.
Equation ( 2. 54) does not include }\1 and may be integrated in a straightforward
way from the initial values (2.56) at x =0 . The solution Y thus obtained is
used to estimate the integral and the value of ['*x] x=1 in Eq. ( 2.55), from
ek xl is determined as,

1 1

Once 3\1 is evaluated, Eq. (2.5l1) is now integrated from the initial values in
Eq. (2.4]) at x=1 . The process seems to be much easier than that for Egs.
(2.47), (2.48), since ¢( b ’ ;p( 1 are expected to vary little in the whole

rangeof 0< x <1 . The process is essentially the same to find xz, x3, coe

as well as ¢( 2) ’ s.p( 2) s +e+ Iin the further approximations.

2.4 Approximations valid in the whole range of y

Although the solution in a series ir y may be good near y~0, itiscertainly
not validnear y~1. Itisalsonoticedthatthe expries sionforthe y =R relation given
in Eq. (2.22) truncated at a certain power of Y, be;:omes singular at a particular value
of y . Inthe second approximation, R—® aty = -1/ )'l’ where R is supposed to be still
finite. In the slightly different expansion procedure of expanding 1l/\ instead
of M (Korobeinikov et al., 1961), namely

(@+D/h=1-ny+enyPe..,

the y - R relation are obtained from Egs. (2.16), (2.22) as,



otl _, _atl ) 1., .2

R™" = (R /]o)yexp{ Ny +3 A,y + o0l ,
R, e+l

9 _ Ly 2

Yig) =lgexp{\y -5\ y t .00},

where the singularity at y = - 1/ xl for the second approximation above may be

avoided, since an exponential factor remains positive all the time. Neverthe-

less, it can not be valid near y~1, where R should be infinite, while R in

Eq. (2.57) terminated after a finite number of terms remains finiteat y=1 .
An attempt to find an approximate solution valid in the whole range of y

( Sakurai, 1959) will be given in the following. Let us first make two assump-

tions;

i) fex and ii) Ay ah/ dy is negligible in the second equation of Eq. (2.15),

sh . 8h of  of
(f-x) 5o+ W 50 = =h (o +T5) .

The assumption (i) may be seen in Figure 9 below in 'Section 3.1. 3, where
u/U = { for the second approximation for @ =2, y=1.4 is shown for various
values of y and all curves are actually very similar to straight lines through
the origin x =0 . The second assumption is based on the following facts: the
term becomes small near y = 0, since y enters in as a factor, it is also small
at v~ 1 where N\ becomes small. Although it is not clear that the term remains
nall in the intermediate values of y, and both assumptions are based on rather
vague reasons, they simplify the whole situation remarkably and thus make it
1ssible 10 provide an approximate formula valid in the whole range of vy .
From the first assumption we get simply
f= fax {2.58)
-33-




where fo is the function of y only and given by the condition (2.12) at x =1,

£ (1-y) . (2.59)

0" y-i-l.
By use of Eq. (2.58), the second equation of Eq. ( 2.15}, neglecting the term

Ay 8h/ 8y according to the assumption {ii) becomes

18h _ (_c-r+ 1) fo 1
= - 4
h ax --1 0 X
which is readily integrated to give
h=hyx" , ( 2. 60)

where we have used the condition ( 2.12) and put
( atl) f0

l-fo

h =u-(1-y—:Y) 1, m =

0= y-1 (2.6l1)

With use of f, h given in Eqs. (2.58), (2.60), the remaining function g may

be determined from the first equation of Eq. ( 2.15), which is reduced to

9g _ ) m+l
o = yho {fo(l + zx fo) Y'l'l —== \y }x
and integrated to give
+
g=Ax""2 -1 4g (2. 62)

where the condition ( 2.12) is again used and A, g, are given by

yh

A:——- {f0(1+ +2x _xl (2.63)

2 ") ¢t \-u whogg =ty Y
Since f, g, h are all given simply as power functions of x, the integration of

J given in Eq. ( 2.18) is readily performed and we get

A 9y - A

— X
J= i3t e (2h0f0+y-1)+(y-1)(a+1) ’

which is more conveniently written in the following form:
J=P+2NQ , (2. 64)
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where P, Q are known functions given as

. Yo% i+ 5 } 4 —t— g Yoo (1-£,)},
mt3te 207 (mr2)(y-D)’ T (y-D(at)) 0" m+2 0
Yhy 1 1 1 ( 2. 65)

_ _ 1 2
Q=T (mea) ‘mrat3 ~as 2R tyeIY) -
Equation ( 2. 64) is used to eliminate ] from Eq. (2.18),
_ IO ARTT-) e
x—[(d-{-l)] Y_I][] de]

to obtain a differential equation to determine N . Practically it is easier to

eliminate N, leading an equation for J ,

I=P _

It will be seen from Eq. (2.66) that J tends to (a+l) -1 (y-1) “l when y
approaches 1 and accordingly \—~0 there. Since fo’ m—0; 99 ho—'l as
y—1 (c.f. Eqs. (2.59), (2.61), (2.63)), we get, from Eq. (2.65),

1 1 Y

1
(@ (vD > TG WD -1 as vy~ ,

P—-o

from which we get J—( a+l) -1( v-1) -1 in Eq. (2.66), thus M\ is guaranteed to
become zero at y =1 . Equation (2.66) may be integrated numerically starting

from y =0, where A=a+1 and J = given by Eqs. (2.64), (2.65). Equa-

To

tion ( 2. 66) is, however, singular at y =0, since

d] _ a+1 v

and I(l--&::-l-) —~0 as y—0 . To proceed with the numerical integration, it is

then necessary to find the values of (d]/dy)y=0 or (dk/dy)y__0 which are related

in the following way:



a1 =9 dx .
(dy y=0 [dy {P+(a+l)Q}]y=0 +(dy)y=0 (Q)Y=0 . (2.67)

Using this relation as well as Eq. (2.66), it is found

1

. 5 g_& i -g- )

It is interesting to note the value of (a+l) -1 (d\/dy) y=0 which corresponds

to. hl in Bq.ﬁ (2.23), For y=1.4 this gives -2.32, -1.82, -1l.61 for a=0,},2
respectively, and these should be compared with their exact values =-2.138,
-1.989, -1.918 given in Section 2. 3. 3.

With these values given by Eq. (2.67) as well as (J )Y=° =atl at y=0,
Eq. (2.66) was integrated numerically for two cases of a=1,2 and A, ob-

tained finally from Eq. ( 2. 64) is plotted in Figure 6, where \=-curves given in

3 <—1st approx.

Approximate theory

2 ! Coldstine & v. Neumann a=2
/ 2nd approx.
1st. approéx. —~

a=] 2nd approx.
Approximate theory

—t

0 0.5 Lo y= %)

Figure 6

Decay curves (\ vs y) from various results for « =1, 2 .
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series of y determined in the proceeding section in their first and second ap-
proximations, and the curve obtained purely numerically by Goldstine and
von Neumann (1950) for a = 2 are shown for comparison. Knowing J as a

function of y, the R-y relation (or U-R relation) is given directly by Eq. (2.13),

R \a+l 2
(_0) =] -t _C
IR =7 " (atl) (v-1)? Y‘Uz'
or (2. 68)
_R_ - p_{ ] - 1 "1/(0"'1)
Ry | g2’ (at(y-D) .

It is easy to see in this expression that R becomes infinite as y approaches
1 because J goes to (atl) -l( v-1) -1 there as mentioned above. Its asymptotic

behavior near y =1 is, however, a little different from the exact one, which is

known as,
rR"l/Z for a=0
1-y e <R-3/4 for a=1
(log R)]/ 27 for a=2

( Whitham, 1950, in Sedov, 1957).

It is noted that the expression ( 2. 68) itself is exact as far as J is exact, but
J in this approximation is not precise enough at y~1 and 1 -y behaves as
R-( atl) instead. Nevertheless, Eq. (2.68) with this value of J is expected
as a whole to give a rather good approximation to the whole range in U~R re=-

lation. Its defect at y~1 may be improved in a similar way to that given in

Korobeinikov et. al., (196l1) by modifying J locally at y~1 to fit the exact
asymptotic behavior there.

In spite of their comparatively simple forms, the approximate solutions of



f, g, h given by Eqs. (2.58), (2.60) and (2.62) seem to represent the feature
fairly well ( Sakurai, 1959). Because of its simplicity, the g function in

Eq. (2.62) was used to analyze the wave form of thunder, which needed trans-
formation too difficult to perform with the more elaborate formula ( Thome, 1962)

( See, Section 3.6). This approximate solution has also been used by Jeanmaire
(1963) to study the flow field in T-shock-tube. Another approximation theory
is considered b§ asir.;a (1960) . He introduced a concept of '"quasi-similarity"
based on the insensitiveness of the functions f, g, h with the variable y and
assumed

of 1% 89 1% an_1 %o
&

&y 1, dy

where fo, Py ho are given in Eqgs. (2.59), (2.63), and (2.61). Using the
expressions, the fundamental system of equation ( 2.15) are reduced to a system
of ordinary differential equations where y comes in as a parameter. Using the
above assumption again, dJ/dy is reduced to an integration including f, g, h
where y enters as a parameter. The procedure to find the solution for any shock
strength y is as follows: start with a guess to A and integrate the system of
differential equations numerically with given value of y, the solution is used
to evaluate J, dJ/dy in Eq. (2.17) to get a new A value, with which we re-
peat the same process until we get the same value as the proceeding M\ value.
Actual computations were carried out for a =1 (cylindrical wave) at respective
values of y"l/z =U/C =11, 1.2, 1.4, 1.6, 2, 3, © . The last two cases have
been found to coincide with the solution in series of y given ir. Section 2. 3.

The solutions were used to compare with his experimental data on the exploding

wire (c.f.) Section 3, 3).,
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§3. Application to Various Problems

3.1 Blast Wave

Although application of the foregoing theory to actual blast waves should be
the main subject of this article, it is not easy to give a comprehensive survey
of it with full use of experimental data. An excellent description of the phenom-
enon is given in the book '"The Effects of NMuclear Weapons' ( Glasstone, ed.)
(1962) and a comparison of the theory with some data is well reviewed in the
book by Korobeinikov et al., (1961). Only a brief description will be given here,
by displaying the relations which might be useful for making a comparison with
experimental data.
3.1.1 Characteristic lengths, Scaling laws

As long as we assume the point source model, represented by the condition
( 2. 8), the only characteristic length that appears in the entire formulation is

R0 given by Eq. ( 2.14), and the features corresponding to the different RO are
1/( a+l)

simply obtained by scaling. Since R0 is proportional to Ea

and EZ to
the spherical case is roughly proportional to the weight W of the explosive (of
the same kind, of course), the scaling factor is expected to be proportional to

WV 3 . This is usually known as the Scaling law for blast waves and is known

to hold for fairly wide range of W (or E 2) « (See for example, '"Effects of
Nuclear Weapons'" (1962) pp. 127~146).
It is noticed, however, that R0 is also related to Py in the form
~1/( a+l) . -
R0 oC Py , and there exists another scaling law concerning the ambient

pressure p, . Since the rate of explosion energy converting into blast wave

energy depends significantly on the ambient pressure Py (the rate usually

-39




decreases as the pressure is reduced), this scaling law can not be so accurate
as the last one above, but nevertheless we may expect the scale of the blast
wave from the same source to be magnified as the ambient pressure is reduced.
This fact may be useful in producing a situation equivalent to a strong explosion
in a laboratory experiment with a relatively small explosion, where the ambient
pressure is reduced. The technique was used successfully in the study of a
blast wave from an exploding wire ( See Section 3. 4 below).

It is stressed that the role of RO is not merely the scaling factor, but
characterizes the entire phenomenon and much information can be obtained by

simply estimating the value of RO by the formula ( 2.14). The length R, itself

0
indicates a distance in which U/C falls to roughly about 1.8 for a =2 (See
Figure 7 below) and this corresponds to about 2. 6 of the value of the over-

pressure ratio at the shock front (defined by (p-pg) R/ Pyy» See the shock

y=
condition in Eq. (2.6)). These figures are useful when estimating a rough
picture of the range in which the individual blast wave is effective.

Apart from the ideal model of a point explosion, there are many other charac-
teristic lengths in actual circumstances, such as the dimensions of the explosive
and so on, and some of them are in fact important especially for understanding
some details of the phenomenon, while the length R, gives an over all feature.
Another characteristic length not directly related to